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The combination of Brans and Dicke's idea of a variable gravitational constant 
with the Higgs-field mechanism of elementary particle physics results in a new 
theory of gravity. Einstein's theory is realized after symmetry breaking in the 
neighborhood of the Higgs-field ground state. 

There exist today in the literature two fundamental scalar fields con- 
nected with the mass problem. First of all Brans and Dicke (1961; see also 
Jordan, 1955) introduced a scalar field with the intention of following 
Mach's principle (Einstein, 1917, 1973) that the active as well as passive 
gravitational mass rno~/G, which means the gravitational "constant" G, is 
not a constant but a function determined by the other particles of the uni- 
verse. In this way also the problem of Dirac's large cosmological numbers 
should be solved. Second, in elementary particle physics the inertial mass m0 
is generated in a gauge-invariant theory by the interaction with the scalar 
Higgs field, the source of which is also given by the particles in the universe 
(Dehnen et al., 1990). Because of the identity of gravitational and inertial 
mass (equivalence principle), it seems to be meaningful, if not even necessary, 
to identify these two approaches. Then the Lagrangian density has the pro- 
posed form (h = 1, c= 1) 

- V(r (1) 

with the Higgs potential (/12, ~ real-valued constants) 

V(q~)=-~btq~+~. l (~btq~ 2 3/ ' t4  ) - k - ~ -  (la) 
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Here q~ is a U(N) isovector, II/l means its covariant derivative, R is the Ricci 
scalar, and a is a dimensionless factor, whereas LM contains the fermionic and 
massless bosonic fields belonging to the inner gauge group U(N). Obviously, 
the positive Higgs-field quantity ~b*~b [cf. equation (9a)] plays the role of a 
variable reciprocal gravitational "constant." Formula (1) is related to a gen- 
eralization of Brans and Dicke's theory proposed by Bergrnann (1968) and 
Wagoner (1970) as well as by Zee (1979, 1980) [see also references in Zee 
(1980)]. We want to point here to some interesting features of the ansatz (1), 
which unifies gravity with the other interactions using a minimum of effort. 

Before symmetry breaking the theory following from (1) contains no 
gravitational constant; the only dimensional parameters are those of the 
Higgs potential. Such a theory of gravity may be renormalizable according to 
the criterion given by de Witt (1979), although it is not unitary. Concerning 
symmetry breaking, the ground state of the Higgs field is given by (p2< 0) 

~bto~b0= v 2 - - 6 p 2  (2) 

with 

V(~o) -- 0 (2a)  

By this ground state the quantity 

G = (av 2)-1 (3) 

related to Newton's gravitational constant (see below), as well as the mass 
of the gauge bosons 

Mw=~/~ gv (4) 

are determined [g is the coupling constant of the gauge group U(N)]. 
Accordingly the factor a denotes the ratio 

a "~ (Mp/Mw)2>> 1 (5) 

where Me is the Planck mass. 
The field equations for gravity and the Higgs field following from (1) 

take the form 

t 87r 
Ru~ - ~ Rg,~v + a- ~ V( O )guy 

87r 47r 

47r ~ LIz 1 , )II# 
+ ~ q - 7  ~bl!zq~ gs~-qTq-, [(q~ ~b )li#llv- (~btq~ rl#g.~] (6) aq) O q) q) 
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and 

O'lu,i . ---~ a~R +12 ~o+~ (q~t~b)4)=0 (7) 

as well as the adjoint equation of (7). Here T~v is the symmetric energy- 
momentum tensor belonging to L M , ~  in (1) alone. The conservation laws 
of energy and momentum read 

T/,~=0 (8) 

Now we perform the symmetry breaking and introduce the unitary 
gauge. If with respect to (2) 

4)0 = vN; N*N = 1 ; N = const (9) 

represents the ground state, the Higgs field q~ can be brought within the 
unitary gauge into the form: 

c~ = pN, p 2 = ~bt~b (9a) 

For the following we use therefore instead of ~b the real-valued field quantity 

go=p/v (10) 

(rp= 1 represents the ground state). Restricting ourselves to the field equa- 
tions for gravity, i.e., the metric g~ ~ and the Higgs field go, we find from (6) 
and (7) (I ,  means the usual partial derivative) 

12re /~4 
- -  _ _  g o - - 2 ( ( ~ 2 -  1)2g~v R ~ - ~ R g . ~ +  av 2 /~ 

al.) 2 O[ G go-2golUgolv 

~ go go got,~g.~-2go [goi~ v-gol'~ltZ&,v] (11) 

and 

3a) +48~r /4 1 - 87r 
4~a 1 + ~  go21",l ~ •V 2 _ ~ ( g o 2  ) _ a v ~ T  (12) 
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With respect to (3) and (5) we obtain from (11) and (12) the final result: 

1 ]a 4 
R u v -  ~Rgu,, + 12zG ~- q~-2(r 1)2gu ~ 

= _ 8zG~o-2Tj,~ - 2~p-2~oLu~oq 

+ 2q~- 2r ~q~lzgu ~ - 2~0-1 [q~lull~ - q~l zihzg~, v ] (13) 

and 

j[,t 4 8 ~ ' G  T (14) 
3 

There are two very important differences with respect to Brans and 
Dicke's scalar-tensor theory. First, the scalar field ~0 possesses a finite range 
I = M ~  1 corresponding to the mass term in (14) according to which the 
excited Higgs field has the mass square 

4 

~-16zG p (15) M y -  

This is smaller than the usual value by the factor a-1. In this connection we 
note that G in (3), (13), and (14) represents Newton's gravitational constant 
only up to a factor of the order of one. The exact connection between G and 
the Newtonian value GN is given by the Newtonian limit of (13) and (14) 
and this depends, as shown below, on the value of ! for the range of the 
scalar field. In case of a suitable choice of this range, also no difficulties 
with respect to the solar-relativistic effects or gravitational waves are to be 
expected; however, the possibility of a fifth force of Yukawa type is given. 

Second, there exists, according to the left-hand side of (13), a cosmo- 
logical function (instead of a cosmological constant) 

4 

A, (cp) = 12zG ~- ~0-2(~ 2 - 1) 2 (16) 

which is necessarily positive. This is very interesting because a positive value 
of a cosmological function (constant) corresponds to a positive mass density 
and a negative pressure, so that this theory could solve the problem of 
missing mass and of inflation in cosmology automatically. 

For the ground state of the Higgs field (q~- 1) the cosmological function 
A,(q~) vanishes [see also (2a)] and from (13) and (14) it follows that 

R ~ v -  �89 - 8 z G T z v ,  T=0 (17) 

This is Einstein's theory with lightlike matter. Einstein's theory is realized 
only after symmetry breaking in the neighborhood of the ground state. Of 
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course, in case of vanishing energy-momentum tensor the ground state is 
realized by the Minkowski space-time and q~ = 1. 

Finally we investigate the Newtonian limit. For this we set 

g~v=~Iuv+huv; ~p= 1 +~" (18) 

and linearize with respect to j huv]<<l and ](1<< 1 [r/uv=diag(1, -1 ,  -1 ,  
-1)] .  In this way we obtain from (13) and (14) using the de Donder gauge 

v 1 
h u rv- ~hpu=O: 

1 ] . / 4  
h ~ v l z l ~ = - 1 6 ~ G ( T ~ -  ~T~u~)+ 32JvG-~ ( q u ~ - 4 ( l u l ~  (19) 

and 

~4 4toG T (20) 
( J a l x + 1 6 ~ G  ~ ( =  3 

Because of the geodesic equation of motion of a free point particle in conse- 
quence of (8) 

h00 = 2~bN (21) 

is valid, where ~b~ is the Newtonian gravitational potential. Insertion of (21) 
into (19) yields 

/t 4 
q~N I~ IX = -- 8~G(To0 - �89 T) + 16a'G ~- ( - 2(!010 (22) 

For a point particle of mass M at rest in the origin the solution of (20) reads 

= M G  _ r/t l 2_ - -  e , - -  ( 2 3 )  
3r 16~cG/t 4 

Herewith the solution of (22) for a point particle takes the form 

1 (~N - M G  (1 + g e -r/i) (24) 

Consequently G = G~ is valid, where G~ is the Newtonian gravitational 
constant GN determined by a torsion-balance experiment in the laboratory 

3 
in the case r >> l. In case of r << l one finds G = z Go with Go = GN. It is interest- 
ing that such gravitational potentials, where the usual r -  1 potential is supple- 
mented by a Yukawa term, are discussed in connection with the fifth force 
(Fischbach et al., 1986; Eckhardt et al., 1988) and in view of the flat rotation 
curves of spiral galaxies (Sanders, 1986). 
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In the static linear Newtonian limit, the potential equations following 
from (20) and (22) are 

A ~ - ~  if= 3 p' Aq~N+ ff 167rG 3 p (25) 

instead of the Poisson equation. The meaning of ~" is that ~p-2 = 1 - 2~ repre- 
sents the variability of the gravitational "constant" in first order [cf. equation 
(13)]; it decreases in view of (23) with decreasing distance from a mass. 
Therefore the gravitational action of massive objects will be damped. The 
cosmological function (16) is of second order in r and therefore not yet 
contained in (25); however, its absolute value increases with decreasing 
distance from a mass. Finally we note that the scalar field ~ acts in the 
potential equation (25) for ~bN as a negative mass density (antigravity) (cf. 
Sanders, 1986). The applications of these ideas to modern astrophysical and 
cosmological questions are in preparation. 

REFERENCES 

Bergmann, P. G. (1968). International Journal of Theoretical Physics, 1, 25. 
Brans, C., and Dicke, R. (1961). Physical Review, 124, 925. 
Dehnen, H., et aL (1990). International Journal of Theoretical Physics, 29, 537. 
De Witt, B. S. (1979). The formal structure of quantum gravity, in Recent Developments in 

Gravitation (M. Levy and S. Deser, eds.), Plenum Press, New York, p. 300. 
Eckhardt, D. H., et al. (1988). Physical Review Letters, 60, 2567. 
Einstein, A. (1917). Sitzungsberichte der Preussischen Akademie der Wissenschaften Berlin, 

p. 142, w 
Einstein, A. (1973). Grundziige der Relativitiitstheorie, FI Vieweg, Braunschweig, p. 98. 
Fischbach, E., et al. (1986). Physical Review Letters, 56, 3. 
Jordan, P. (1955). Schwerkraft und Weltall, F. Vieweg, Braunschweig. 
Sanders, R. H. (1986). Astronomy and Astrophysics, 154, 135. 
Wagoner, R. V. (1970). Physical Review D, 1, 3209. 
Zee, A. (1979). Physical Review Letters, 42, 417. 
Zee, A. (1980). Physical Review Letters, 44, 703. 


